K060NS.WTR.CAT.EN01



# K-060 NS 16 bar K-062 NS 25 bar K-064 NS 40 bar

### Air & Vacuum Air Valve for High Flow Non Slam

#### Description

The K-060 NS series Air & Vacuum Valve is a surge-dampening, slam-preventing air valve.

The valve is designed to automatically discharge or admit large volumes of air during the filling or draining of a pipeline or piping system. This valve will open to relieve negative pressure whenever water column separation occurs

#### Applications

- Water pipelines with anticipated conditions of surge and water hammer.

- On the peaks of water pipelines with steep slopes.
- Water pipelines where water column separation occurs.
- Water systems with high pressure demands (K-062 NS, K-064 NS).

#### Operation

The air & vacuum valve discharges air at high flow rates during the filling of the system and admits air at high flow rates during drainage, pump shut-off or at water column separation.

High velocity air will not blow the float shut. Liquid entry will cause the sealing of the valve.

At any time during system operation, should internal pressure of the system fall below atmospheric pressure, air will enter the system. The smooth discharge of air prevents pressure surges and other destructive phenomena.

The intake of air in response to negative pressure protects the system from destructive vacuum conditions and prevents damage caused by water column separation. Air entry is essential to efficiently drain the system.

### As the system fills and is pressurized, the air valve functions in the following stages:

1. Air is discharged by the valve.

2. Liquid enters the valve, lifting the float which pushes the sealing mechanism to its sealing position.

### When internal pressure falls below atmospheric pressure (negative pressure):

1. The float will drop down, immediately opening the air & vacuum orifice.

2. Air will enter the system.

#### **Main Features**

- Working pressure range:
  - K-060 NS 0.2-16 bar
  - K-062 NS 0.2-25 bar
  - K-064 NS 0.2-40 bar
- Testing pressure for the air valve is 1.5 times its working pressure.
- Maximum working temperature: 60°C.
- Maximum intermittent temperature: 90°C.
- All main flow cross-sections are equal or greater than the nominal port area.
- Aerodynamic design enables high flow rates of air both at intake and at discharge.
- Reliable operation reduces water hammer incidents.
- Dynamic design allows for high capacity air discharge while preventing premature closure.
- Special orifice seat design: Stainless steel and E.P.D.M rubber assures long-term maintenance-free operation.
- Screen protected outlet.
- The upper screen is protected with a protective cover.

#### Valve Selection

- Size Range: 1"-10" (50mm - 250mm) for all models in the series. - These valves are manufactured with flanged ends to meet any requested standard.

- The 1", 2"valve is also available with a threaded male BSP/NPT connection.

- Valve coating: FBE coating in compliance with the standard DIN 30677-2.

- Other coatings are available upon request.

- The K-060NS series air & vacuum air valve is also available as a combination air valve for Models D-060 NS, D-060-C NS, D-062 NS, D-065 NS, with the addition of an Automatic Air Release valve.

#### Note

For best suitability, it is recommended to send the fluid chemical properties along with the valve request.

Upon ordering, please specify: model, size, working pressure, threads standard and type of liquid.

#### **Non-Slam Disc**

The built- in throttling device on the Non-Slam disc of the D-060 HF NS Combination Air Valves will allow for the graduated opening and closing of the disc orifice.

#### Advantages:

1. The orifice size of the disc can be adjusted to control and throttle the discharge of air during pipeline filling and during the return of the water column after separation.

2. The controlled discharge of air will reduce surge effects and provide for a silent closure of the air valve.

3 .The closure of the orifice can be determined by running a surge analysis or by a decision taken in the field.

4. The orifice throttling device allows for a wide range of options from 100% open, partially open, partially closed to 100% closed.



#### K-060 Non-Slam Orifice Data Table

| Nominal<br>Size | Discharge<br>orifice mm | Total NS<br>area mm <sup>2</sup> | NS orifice<br>mm | Switching<br>point<br>cm         | Flow at<br>0.4 bar<br>m³/h |
|-----------------|-------------------------|----------------------------------|------------------|----------------------------------|----------------------------|
| 1" (25 mm)      | 37.5                    | 12.6                             | 4                | Spring loaded<br>normally closed | 17.5                       |
| 2" (50mm)       | 50                      | 63                               | 9                | 10                               | 90                         |
| 3" (80mm)       | 75                      | 175.4                            | 15               | 23                               | 240                        |
| 4" (100mm)      | 100                     | 476.4                            | 24.5             | 23                               | 350                        |
| 6" (150mm)      | 150                     | 900.6                            | 34               | 23                               | 600                        |
| 8" (200mm)      | 200                     | 1696.9                           | 46.5             | 30                               | 1200                       |
| 10" (250mm)     | 250                     | 1575.7                           | 45               | 25                               | 5100                       |





#### **AIR & VACUUM FLOW RATE**



**AIR DISCHARGE SWITCHING REGION** 



AIR & VACUUM FLOW RATE



**AIR DISCHARGE SWITCHING REGION** 



**AIR & VACUUM FLOW RATE** 



**AIR DISCHARGE SWITCHING REGION** 



Flow Rate [m3/h]



#### DIMENSIONS AND WEIGHTS

| Nominal            | Dimens | ions mm | Connection                | Weight | Orifice Area |
|--------------------|--------|---------|---------------------------|--------|--------------|
| Size               | Α      | В       | С                         | Kg.    | mm²          |
| 1" (25mm) Threaded | 243    | 225     | 1 <sup>1</sup> /2" Female | 4.1    | 506.7        |
| 1" (25mm) Flanged  | 243    | 225     | 1 <sup>1</sup> /2" Female | 5.1    | 506.7        |

#### **1" PARTS LIST AND SPECIFICATION**

| No. | Part                | Material                       |
|-----|---------------------|--------------------------------|
| 1.  | Plug                | Brass                          |
| 2.  | One Way Check Valve | Acetal                         |
| 3.  | Discharge Outlet    | Polypropylene                  |
| 4.  | Cover               | Ductile Iron                   |
| 5.  | Orifice Seat        | Bronze                         |
| 6.  | Orifice Seal        | EPDM                           |
| 7.  | O-Ring              | BUNA-N                         |
| 8.  | Bolt, Nut & Washer  | Steel, Zinc Cobalt Plated      |
| 9.  | Body                | Ductile Iron                   |
| 10. | Float               | Polycarbonate /Stainless Steel |





| Nominal            | Dimensions mm |     | Weight        | Orifice Area |
|--------------------|---------------|-----|---------------|--------------|
| Size               | Α             | В   | Kg.           | mm²          |
| 2" (50mm) Threaded | 185           | 288 | 12 - 12.4     | 1960         |
| 2" (50mm) Flanged  | 185           | 277 | 12.1 - 12.4   | 1960         |
| 3" (80mm)          | 219           | 362 | 18.4 - 19.4   | 5030         |
| 4" (100mm)         | 262           | 420 | 26 - 27.3     | 7850         |
| 6" (150mm)         | 375           | 615 | 85.5 - 90.3   | 17662        |
| 8" (200mm)         | 463           | 777 | 130 - 138.3   | 31400        |
| 10" (250mm)        | 586           | 900 | 294.5 - 306.8 | 49087        |

#### PARTS LIST AND SPECIFICATION

| No  | .Part              | Material                        |
|-----|--------------------|---------------------------------|
| 1.  | Domed Nut & Washer | Stainless Steel 304             |
| 2.  | Screen Cover       | Polyethylene                    |
| 3.  | Threaded Rod       | Stainless Steel 304             |
| 4.  | Screen             | Stainless Steel 304             |
| 5.  | Cover              | Ductile Iron                    |
| 6.  | Ring               | Stainless Steel 316             |
| 7.  | Non-Slam Disc      | Stainless Steel 316             |
|     |                    | / Ductile Iron / Carbon Steel   |
| 8.  | Bolt, Nut & Washer | Steel, Zinc Cobalt Coated       |
| 9.  | Orifice Seat       | Bronze                          |
| 10. | Orifice Seal       | EPDM                            |
| 11. | O-Ring             | BUNA-N                          |
| 12. | Float              | Polycarbonate / Stainless Steel |
| 13. | Body               | Ductile Iron                    |
|     |                    |                                 |







#### 6"-8" SPECIAL PARTS

| 2.  | Screen Cover  | Polyethylene |
|-----|---------------|--------------|
| 5.  | Cover         | Ductile Iron |
| 5.1 | NS Housing    | Polyethylene |
| 6.  | Ring          | Carbon Steel |
| 7.  | Non-Slam Disc | Ductile Iron |

#### **10" SPECIAL PARTS**

| 2. | Screen Cover  | Polyethylene |
|----|---------------|--------------|
| 5. | Cover         | Ductile Iron |
| 6. | Ring          | Carbon Steel |
| 7. | Non-Slam Disc | Ductile Iron |



**Operation in Rapid Filling of the Pipeline:** 



1. When water, rapidly filling the pipe line, pushes the air out through the Air Valve, a differential air pressure is created across the valve orifice.



When this differential pressure reaches a prefixed level (usually it will be prefixed at 0.02 - 0.03 bar) the orifice disc will close.
Air will continue to come out through the small orifice disc - until all the air will be exhausted and water will reach the kinetic float. This double stage kinetic air discharge prevents the slam effect and therefore suppresses water hammer.







6. When water is drained out of the pipe line, the resulting pressure drop lets the kinetic float fall down, opening the orifice fully for intake of high volume of air into the line.

#### A.R.I. FLOW CONTROL ACCESSORIES Ltd. www.arivalves.com ari@ari.co.il Tel: 972-4-6761988